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STEMCELL/CELLTHERAPY

i Step 1

* Harvesting
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Potential uses of
Stem cells
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GENE THERAPY

Direct Delivery Cell-based Delivery
Genetically modified ES cells
{can bleck immune rejection
Q Therapeutic I
gene O
ES cell
S En o \\}‘ ES cells
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ir! vitro ‘
Adult stem cells are differentiated The therapeutic gene
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ANTI AGING MEDICIN

CHD, Cardiac Fibrosis,
Hypertension, Ischemia,
Myocardial infarction Skin Ageing,

Macular degeneration, Sunburn, Psoriasis
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ENHANCEMENT OF ENDOGENOUS
REGENERATION

He's not just a fish.
He’s hope.
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This zebrafish can heal his own heart.

With your help, maybe we can heal ours too.




DIFFERENT REGENERATIVE CAPACITIES OF THE HEARTS OF ADULT
HUMANS, ADULT ZEBRAFISH AND NEONATAL MICE
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REGENERATION OF THE MAMMALIAN
NEONATAL HEART

Global
proliferation

nght atrium
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_ Epicardial gene—
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Injury inbltration Regeneration and
restoration of function
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= QT%E Proliferation (for example, CDKs, cyclins and CHEK1)
z Fa| T
[Binucleation [miR-15 family (miR-195)
Nature Reviews | Molecular Cell Biology

a | Regulation of cardiomyocyte proliferation by fibroblast growth factor 1 (FGF1) and neuregulin 1
(NRG1). Inhibition of the MAPK p38 in the presence of FGF1 or the activation of NGR1 signalling
promotes cardiomyocyte re-entry into the cell cycle by activating PI3K, leading to DNA synthesis and
cytokinesis. However, most cardiomyocytes in mice become binucleated shortly after birth as a
consequence of DNA replication without cell division. b | Regulation of cardiomyocyte proliferation by
microRNAs (miRNAs). miRNAs can positively (miR-590-3p and miR-199a-3p) or negatively (miR-15
amily, including miR-195) regulate cardiomyocyte proliferation. miR-590-3p and miR-199a-3p promote
ardiomyocyte proliferation by inhibiting the expression of genes encoding proteins that inhibit cell
roliferation such as HOMER1, HOP homeobox (HOPX) and chloride intracellular channel 5 (CLIC5).
e miR-15 family of miRNAs inhibits the cell cycle, and thus cardiomyocyte proliferation, by down-
gulating genes encodmg_p,,gleme—thatactwate the cell cycle. CDKs, cyclin- dependent klnases

EK1 checkpointkinase 1; FGFR, FGF receptor. = - =
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CM migration (cxcl12a-cxcr4b) CM proliferation

"

TN\ o ) L
cxcl12a 4 D regenera

Neo-vascularization

cxcrdb”- mutant E:>w
CXCR4 antagonist \- J

A model of heart regeneration in zebrafish. Amputation

induces cxcll2a-cxcrdb-dependent directed migration of CMs into the
injury site. CM proliferation and neo-vascularization are regulated
independently from CM migration. Coordinated progression of these
processes regenerates the injured heart. The orange circles represent
proliferating CMs.
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ROUTES OF REGENERATION

 Dedifferentiation
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DEDIFFERENTIATION AND HEART
REGENERATION.

!SErmmere

Dedifferentiation \

Cell cycle gene
expression
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DEDIFFERENTIATION AND HEART
REGENERATION.

Regeneration in the Zebrafish Heart

Amputation
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EXPERIMENTAL
TRANSDIFFERENTIATION

Transformed B cells Exocrine Muscle
myeloblasts cells precursors
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Fibroblasts T cells Fibroblasts
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In vitro
Gatad, Mef2c, Thx5, Hand2)

= %

Cardiac fibroblasts

Gatad, MefZc, Thx5, Hand2, Nkx2.5, 5B432542

In vitro iICMs
Mef2c, Tbx5, myocardin

miR-1, miR-133, miR-208, miR-499, JI1

In vive

Injured adult heart In viva iCMs

thods of direct cardiac reprogramming. Several approaches for converting mouse or rat fibroblasts to
diomyocyte-like cells in vitro and in vivo have been reported and are summarized here. In vitro
ogramming predominantly yields partially reprogrammed cells, while in vivo reprogramming yields
e mature, fully reprogrammed‘cﬂqigm_lo_cyte--like cells. iCMs denotes induced cardiomyocytes

".__C_hfe”n H, et al. BioMed Research International Volume 201 ,Ar_tﬁi_(::-l'éwl-D 580406, 8 pages'z':?:_i”""




A suggested hypothesis on the role of exosomes released from a damaged heart as a potential

intercellular communicator.

Heart miRNAs/Gene
Expression Altered

Altered Exosomes
After Ischemia

Mir-126,
302 / ‘fég o MiR-1,133a
a, 214,21,92a
150 &) . 34a, 208
Regeneration/ Distant

e Protection

ae

OG0
|
O Circulating Exosomes/
miRNAs from BM
-

BM Niche/miRNAs
Reprogrammed

Circulating
Exosomes/miRNAs

Progenitor
Cell Migration

Signals to
Bone Marrow

Susmita Sahoo, and Douglas W. Losordo Circulation
o Research.2014;114:333-344

American
Heart
Association.

Exosomes can carry
signaling molecules to
activate local tissues
(C indicates
cardiomyocytes; E,
endothelial cells; F,
fibroblasts; and S,
stem cells) and distant
organs such as bone
marrow (BM).
Furthermore, the
exosomes released
from progenitor cells
and the reprogrammed
BM can reprogram the
ischemic tissues of the
heart, inducing
protection and
regeneration
(illustration credit: Ben
Smith).

Copyright © American Heart Association, Inc. All rights reserved.


Presenter
Presentation Notes
A suggested hypothesis on the role of exosomes released from a damaged heart as a potential intercellular communicator. Exosomes can carry signaling molecules to activate local tissues (C indicates cardiomyocytes; E, endothelial cells; F, fibroblasts; and S, stem cells) and distant organs such as bone marrow (BM). Furthermore, the exosomes released from progenitor cells and the reprogrammed BM can reprogram the ischemic tissues of the heart, inducing protection and regeneration (illustration credit: Ben Smith).
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IN SITU
REPROGRAMMING

REGENERATED
MYOCARDIUM

Cell therapy and tissue engineering approaches for cardiovascular disease therapy.

Heart failure due to ischemic heart disease or genetic disorders remains a major healthcare burden.
Potential novel treatment options include transplantation of iPSC-CMs or ESC-CMs, as well as direct in vivo
reprogrammmg of cardlac flbroblasts in the scar reglon to |CMs The regeneratlve capacity of adult stem anc




NANOTECHNOLOGY AND
REGENERATIVE MEDCINE




NANOTECHNOLOGY
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NANOTECHNOLOGY IN CELL THERAPY

SPIO
(Superpara-
magnetic iron
oxide)

« Cell king &
imea(\:]tirnagc ing Qf@

« Cell targeting

 Cell retention
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NANOTECHNOLOGY IN
CELL PROCESSING

Grooved surfaces Aligned fibers
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INTRACELLULAR NANOSURGERY
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@ Nucleus

= Golgi complex

c a -_ . |, Endosomes
Removal of the Golgi complex  Actin stress fibers |

from a living cell

Fibronectin pattemJ




NANOTECHNOLOGY T
INTISSUE N

* Type IV collagen e Integrins
+ Laminin =, = A\ Endothelial cells ~ Adhesive
ENGINEERING Mg |

glycoproteins
LW

Proteoglycan
e INTERSTITIAL MATRIX

Type IV collagen « Fibrillar collagens
+ Elastin
Laminin + Proteoglycan and y 1"
hyaluronan collagen triple helices Proteoglycan

« Mimicking the
nature!
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Nanofibrous scaffolds

* A functional scaffold develop
* * from natural polymers

+ * (hemoglobin/gelatin/fibrinoget
* (Hb/gel/fib), crosslinked with a

natural crosslinking agent, phytic
acid. Pretreatment of
mesenchymal stem cells (MSCs)
using 5-azacytidine and such a
l functional nanofibrous construct
having a high oxygen carrying

potential could lead to enhanced

cardiomyogenic differentiation of
MSCs.

Protein nanofibers

crosslinked with Phytic acid Mesenchymal stemcells  5-azacytidine

MSCsdifferentiated to cardiogenic lineage expressing
cardiac marker proteins actinin and troponin

Mm”«R'avrchﬁ'ﬁm et al. Macromol. Biosci. 2013 13 366—375
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CONDUCTIVE NANOFIBROUS CARDIAC PATCH
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Nanofibrous Vascular Grafts

Inner layer with linearly aligned
nanofibers — providing longitudinal
mechanical strength and laminar
flow of the blood.

Middle layer with perpendicularly
wrapped nanofibers — main
mechanical support preventing
bursting of the graft.

Outer layer with randomly
deposited nanofibers — providing
integration with sorrounding
Schematic of a three-layered vascular graft tissues.

scaffold with different fiber alignment for each

layer.

Courtesy of Seeram Ramakrishna, NUS Center for Nanofibers & Nanotechnology



Nanofibrous tissue engineering bypass graft (PU)

A

Bioreactor design
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3D BIOPRINTING OF TISSUES AND ORGANS

Two-dimensional tissue

‘l"— Skin

Cartilage
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NANOTECHNOLOGY AND MEDICAL
IMPLANTS IMPLANTS

Tensile Stress (MPa)
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Nanocomposite heart valve with self-
endothelialisation potential
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A) Live light microscopy images of EP
cultured on nanocomposite (NC)
samples in (i) day 7 and (ii) day 21,
showing the early spindle-shaped
morphology in day 7 has been
dominated by the late cobblestone
shaped phenotype in day 21. A colony
of EPC is marked with arrow.

B) Scanning electron microscopy
represents attachment and proliferatior
of EPC on nanocomposite samples.
The inset shows cells undergoing
division. .. —
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Fully retrievable and repositionable; ensures enhanced anchoring and sealing
witout applying excessive pressure on the annulus and allows to maximise
thegexpanded/collapsed diametersratio.



NANOFIBROUS TISSUE ENGINEERING HEART
VALVE
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HUVEC on nanofibrous scaffold

o g,

Amirkabir University  5;92300c SEI_ WD = 15.2 20.0 kV_X 2.0K___30um

Ghanbari, H. et al. unpublished data



T&G Myofibroblast on nanofibrous scaffold

Amirkabir University I ) . Amir.kabir Univo_arsit_)_( __AIS2300C_SEl WD =14.6 20.0 kV X 20K _30um

Amirkabir University AIS2300C _SEl WD =146 20.0 kV_X 1.5K___30um

Ghanbari, H. et al. unpublished data




Tissue engineering bladder

Adrenal glands

45
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Core shell PEO/PU nanofibers for tissue
engineering bladder, a)1%PEO, b)2% PEO,
c)3% PEO and d) 4% PEO; submitted data




TEM images
of PEO/PU
core shell
nanofibers

47



Core shell
nanofibrous
scaffold for
Tissue
engineering
bladder,
submitted
data

48



Culture of SMC on
nanofibrous scaffold
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