Nanopharmaceuticals: A New Perspective of Drug Delivery System

Nanotechnology benefits

Increase drug targeting ability

- Reduce the dose needed
- Enhance oral bioavailability
- Decrease toxicity
- Enhance solubility
- Increase the stability of drug and formulation
- Increase surface area
- Enhance rate of dissolution
- Decrease drug resistance
- Increase patient compliance

Drugs those can be delivered Nanostructurs

Drug	Type of Disease	Type of CNTs
Daunorubicin	Leukemia	SWCNTs
Doxorubicin	Lymphoma	SWCNTs
	Breast cancer	MWCNTs
Methotrexate	Breast cancer	MWCNs
Paclitaxel	Breast cancer	SWCNTs
Gemcitabine	Ovarian cancer	SWCNTs
Amphotericin B Leishmania donovani (parasite)		Not specified
Carboplatin Bladder cancer		Not specified

Drugs/ Therapeutics	Target cells/Diseases	Type of QDs	Efficacy
Saquinavir	HIV-1	Carboxyl-terminated QDs	High site-specificity and can cross BBB
Doxorubicin	Ovarian cancer	Mucin1- aptamer QD	Higher accumulation on target
5-Fluorouracil	Breast cancer	ZnS QDs	Targeting and controlled drug delivery to cancer cells.
Daunorubicin	Leukaemia	CdTe QDs	Enhanced drug uptake
Daunorubicin	Leukemia K562 cells	CdS QDs	Inhibit multidrug resistance

Therapeutics	Type of polymer/ Functionalizati on	Indication/ Activity	Effects
Paclitaxel	Aptamer- PEG- PLGA	Gliomas	Enhanced delivery
Cisplatin	Aptamer- PEG- PLGA	Prostate cancer	Higher efficiency
Vincristine + Verapamil	PLGA	Hepatocellular carcinoma	Reduced multidrug resistance
Doxorubicin+Cyclosp orine A	PACA	Various cancers	Synergistic effect.
Zidovudine	Poly (isohexyl cyanate)	Targeting lymphoid tissue	Drug levels is four times higher
Zidovudine	Polyhexylcyano acrylate	Targeting lymphoid tissue	Higher Zidovudine levels in the body
Stavudine	Polybutylcyano acrylate (PBCA)	HIV/AIDS	8–20 times higher Permeability
Lamivudine	Methylmethac rylate- sulfopropylmet hacrylate	HIV/AIDS	100% increased BBB permeability
Nerve growth factor (NGF)	Polysorbate 80 coated PBCA	Parkinsonism	Improved transport across the BBB
Amphotericin B	PLA-b-PEG	Neurodegenerative diseases	Improved transport across the BBB

Therapeutics	Type of Liposome	Indications
Topotecan+Vincristine	PEG-Liposome	Brain cancer
Irinotecan + Cisplatin	Mixture of two Liposomes	Small-cell lung cancer
siRNA + Doxorubicin	PEG-Liposome	MDR-breast cancer
Doxorubicin+Verapamil	Transferrin- (Tf-) conjugated PEG-Liposome	MDR-leukemia
Budesonide	Small molecular liposome	Asthma
Ketotifen	Small molecular liposome	Asthma
VEGF gene	Gene liposme	Pulmonary hypertension
Amiloride hydrochloride	Small molecular liposome	Cystic fibrosis
Tobramycin	Small molecular liposome	Pulmonary Infections
Interleukin-2	Protein liposome	Lung cancers
Insulin	Protein liposome	Diabetes

Drugs/Therapeuti	Type of	Target cells/	Advantages/ Features
cs	Dendrimers/Conjugat	Indications/	
	es	Functions	
Efavirenz	Tuftsin-conjugated	HIV	Targeted delivery to
	PPE dendrimers		macrophages
Lamivudine	Mannose-capped	HIV	Increased cellular uptake,
	PPE dendrimers		reduced cytotoxicity
siRNA	Amino-terminated	Lymphocytes	Reduced HIV infection, in-vitro
	carbosilane		
	dendrimers		
Sulphated	Polylysine	HIV	Higher activity due to dendrimer
oligosaccharides	dendrimers		product
Galactosylceramid	Multivalent	HIV-1	Higher stability and anti-viral
e analogues	phosphorus-		property, lower toxicity
	containing		
	catanionic		
	dendrimers		
Doxorubicin	2,2	Colon carcinoma	In vitro and in vivo, dendrimer
	bis(hydroxymethyl)	cells of rat	product was ten times less toxic
	propanoic acid-		
	based dendrimers		
SN38	G3.5 PAMAM	Hepatic colorectal	Increase oral bioavailability and
	dendrimers	cancer cells	decrease gastrointestinal
			toxicity
Boron	EGF-carrying	Neuron capture	Intratumoral injection or CED
	PAMAM dendrimers	technology	
EGFR siRNA	Dendriworms	Knockdown EGFR	IV or CED
		expression	
Plasmid pEGFP-N2	Angiopep-carrying	Encode green	IV
	PEGylated PAMAM	fluorescence	
	dendrimer G5.0	protein	

Drug loaded NPs

Engineering NPs

- Surface Functionalization
- Controlled Release
- Tissue-Targeting Design

Combination NPs

Combined Therapy by Simultaneously Encapsulated Drugs.

Combined Therapy by multifunctional NPs

Fast disintegrating/dissolving tablets

0.4 sec

 $0 \sec$

1.5 sec

3.8 sec

Chronotherapeutics

Drug loaded erythrocytes

Iontophoresis and phonophoresis

Molecular imprinting technology

- The molecular imprinting technology has an enormous potential for creating satisfactory drug dosage forms.
- Molecular imprinting involve forming a pre-polymerization complex between the template molecules and functional monomers or functional oligomers (or polymers) with specific chemical structure designed to interact with the template either by covalent, non-covalent chemistry (self-assembly) or both.
- ✓ Rate programmed
- Activation modulate
- Feedback regulated

Thank you for your attention